English

∫ Log ( 1 + 1 X ) X ( 1 + X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]
Sum

Solution

\[\int\frac{\log \left( 1 + \frac{1}{x} \right)}{x\left( 1 + x \right)}dx\]

\[Let, \log \left( 1 + \frac{1}{x} \right) = t\]

\[ \Rightarrow \frac{1}{1 + \frac{1}{x}} \times \frac{- 1}{x^2} = \frac{dt}{dx}\]

\[ \Rightarrow \left( \frac{x}{x + 1} \right) \times \frac{- 1}{x^2} = \frac{dt}{dx}\]

\[ \Rightarrow \frac{- dx}{x\left( x + 1 \right)} = dt\]

\[ \Rightarrow \frac{dx}{x\left( x + 1 \right)} = - dt\]

\[Now, \int\frac{\log \left( 1 + \frac{1}{x} \right)}{x\left( 1 + x \right)}dx\]

= ∫ t   . (-dt)

\[ = \frac{- t^2}{2} + C\]

\[ = - \frac{1}{2} \left\{ \log\left( 1 + \frac{1}{x} \right) \right\}^2 + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.09 [Page 57]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.09 | Q 2 | Page 57

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


`int 1/(sin x - sqrt3 cos x) dx`

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int {cosec}^3 x\ dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int x \sin^3 x\ dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×