Advertisements
Advertisements
Question
\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]
Sum
Solution
\[\int\frac{\log \left( 1 + \frac{1}{x} \right)}{x\left( 1 + x \right)}dx\]
\[Let, \log \left( 1 + \frac{1}{x} \right) = t\]
\[ \Rightarrow \frac{1}{1 + \frac{1}{x}} \times \frac{- 1}{x^2} = \frac{dt}{dx}\]
\[ \Rightarrow \left( \frac{x}{x + 1} \right) \times \frac{- 1}{x^2} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{- dx}{x\left( x + 1 \right)} = dt\]
\[ \Rightarrow \frac{dx}{x\left( x + 1 \right)} = - dt\]
\[Now, \int\frac{\log \left( 1 + \frac{1}{x} \right)}{x\left( 1 + x \right)}dx\]
= ∫ t . (-dt)
\[ = \frac{- t^2}{2} + C\]
\[ = - \frac{1}{2} \left\{ \log\left( 1 + \frac{1}{x} \right) \right\}^2 + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]
\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]
\[\int \left( a \tan x + b \cot x \right)^2 dx\]
\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]
\[\int \sin^3 x \cos^6 x \text{ dx }\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
`int 1/(sin x - sqrt3 cos x) dx`
\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]
\[\int {cosec}^3 x\ dx\]
\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]
\[\int x \sin^3 x\ dx\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx }\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]
\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]
\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]
\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]
\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
\[\int\frac{1}{1 + \tan x} dx =\]
\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\] is equal to
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]
\[\int\frac{1}{e^x + e^{- x}} dx\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]
\[\int \left( \sin^{- 1} x \right)^3 dx\]
\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]
\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]