English

∫ 5 X 2 + 20 X + 6 X 3 + 2 X 2 + X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]
Sum

Solution

We have,

\[I = \int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x}\]

\[ = \int\frac{\left( 5 x^2 + 20x + 6 \right) dx}{x \left( x^2 + 2x + 1 \right)}\]

\[ = \int\frac{\left( 5 x^2 + 20x + 6 \right) dx}{x \left( x + 1 \right)^2}\]

\[\text{Let }\frac{5 x^2 + 20x + 6}{x \left( x + 1 \right)^2} = \frac{A}{x} + \frac{B}{x + 1} + \frac{C}{\left( x + 1 \right)^2}\]

\[ \Rightarrow \frac{5 x^2 + 20x + 6}{x \left( x + 1 \right)^2} = \frac{A \left( x + 1 \right)^2 + B \left( x \right) \left( x + 1 \right) + C \left( x \right)}{x \left( x + 1 \right)^2}\]

\[ \Rightarrow 5 x^2 + 20x + 6 = A \left( x^2 + 2x + 1 \right) + B \left( x^2 + x \right) + Cx\]

\[ \Rightarrow 5 x^2 + 20x + 6 = \left( A + B \right) x^2 + \left( 2A + B + C \right) x + A\]

\[\text{Equating coefficients of like terms}\]

\[A + B = 5 . . . . . \left( 1 \right)\]

\[2A + B + C = 20 . . . . . \left( 2 \right)\]

\[ A = 6 . . . . . \left( 3 \right)\]

\[\text{Solving (1), (2) and (3), we get}\]

\[A = 6 \])

\[B = - 1\]

\[C = 9\]

\[ \therefore \frac{5 x^2 + 20x + 6}{x \left( x + 1 \right)^2} = \frac{6}{x} - \frac{1}{x + 1} + \frac{9}{\left( x + 1 \right)^2}\]

\[ \Rightarrow I = 6\int\frac{dx}{x} - \int\frac{dx}{x + 1} + 9\int\frac{dx}{\left( x + 1 \right)^2}\]

\[ = 6 \log \left| x \right| - \log \left| x + 1 \right| - \frac{9}{x + 1} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 34 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


`  ∫  sin 4x cos  7x  dx  `

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x e^x \text{ dx }\]

 
` ∫  x tan ^2 x dx 

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int \tan^3 x\ dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int \log_{10} x\ dx\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×