English

∫ 1 1 + Cos 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{1 + \cos 2x} dx\]
Sum

Solution

\[\int\frac{dx}{1 + \cos \left( 2x \right)} \left[ \therefore 1 + \cos\theta = 2 \cos^2 \left( \frac{\theta}{2} \right) \right]\]

\[ = \int\frac{dx}{2 \cos^2 x}\]

\[ = \frac{1}{2}\int \sec^2 x dx\]

\[ = \frac{1}{2}\tan x + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.02 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.02 | Q 33 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int x \cos^2 x\ dx\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×