English

∫ a X 3 + B X X 4 + C 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]
Sum

Solution

\[\int\frac{\left( a x^3 + bx \right)}{x^4 + c^2}dx\]
\[ = \int\frac{a x^3}{x^4 + c^2}dx + \int\frac{bx}{\left( x^2 \right)^2 + c^2}dx\]
\[ = I_1 + I_2 \left(\text{ say } \right)\]
\[Where\]
\[ I_1 = \int \frac{a x^3}{x^4 + c^2}dx\ \text{and}\ I_2 = \int\frac{bx}{\left( x^2 \right)^2 + c^2}dx\]
\[Now, I_1 = \int\frac{a x^3}{x^4 + c^2}dx\]
\[\text{ let x }^4 + c^2 = t\]
\[ \Rightarrow 4 x^3 dx = dt\]
\[ \Rightarrow x^3 dx = \frac{dt}{4}\]
\[ I_1 = \frac{a}{4}\int\frac{dt}{t}\]
\[ = \frac{a}{4} \text{ log }\left| t \right| + C_1 \]
\[ = \frac{a}{4} \text{ log }\left| x^4 + c^2 \right| + C_1 \]
\[Now, I_2 = \int\frac{bx}{\left( x^2 \right)^2 + c^2}dx\]
\[\text{ let x} ^2 = p\]
\[ \Rightarrow \text{ 2x dx } = dp\]
\[ \Rightarrow \text { x dx }= \frac{dp}{2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.19 [Page 104]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.19 | Q 9 | Page 104

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int \sin^2 \frac{x}{2} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×