Advertisements
Advertisements
Question
\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
Sum
Solution
\[\text{ Let I }= \int e^x \left( \log x + \frac{1}{x} \right)dx\]
\[\text{ Here}, f(x) = \log x\]
\[ \Rightarrow f'(x) = \frac{1}{x}\]
\[\text{ put }\ e^x f(x) = t\]
\[ \Rightarrow e^x \log x = t\]
\[\text{ Diff both sides w . r . t x}\]
\[ e^x \log x + e^x \frac{1}{x} = \frac{dt}{dx}\]
\[ \Rightarrow e^x \left( \log x + \frac{1}{x} \right)dx = dt\]
\[ \therefore \int e^x \left[ \log x + \frac{1}{x} \right]dx = \int dt\]
\[ \Rightarrow I = t + C\]
\[ = e^x \log x + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int\left( x^e + e^x + e^e \right) dx\]
\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]
\[\int\frac{1}{1 - \sin x} dx\]
\[\int\frac{1}{1 + \cos 2x} dx\]
\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]
` ∫ sin x \sqrt (1-cos 2x) dx `
\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\]
\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]
\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]
\[\int \sin^5 x \cos x \text{ dx }\]
\[\int\frac{1}{4 x^2 + 12x + 5} dx\]
\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]
\[\int\frac{x^2}{x^6 + a^6} dx\]
\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]
\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]
\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]
\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{ dx }\]
\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
\[\int x \cos x\ dx\]
\[\int x^2 \text{ cos x dx }\]
` ∫ x tan ^2 x dx
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]
\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]
\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]
\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int \cot^4 x\ dx\]
\[\int\frac{1}{1 - x - 4 x^2}\text{ dx }\]
\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]
\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]