Advertisements
Advertisements
Question
` ∫ x tan ^2 x dx
Sum
Solution
\[\int x \tan^2 x\ dx\]
= ∫ x (sec2 x – 1) dx
\[= \int x_I . \sec_{II} ^2 \text{ x dx }- \int \text{ x dx }\]
\[ = x\int \sec^2 x - \int\left\{ \frac{d}{dx}\left( x \right)\int \sec^2 \text{ x dx } \right\}dx - \frac{x^2}{2} + C_1 \]
\[ = x . \tan x - \int1 . \text{ tan x dx } - \frac{x^2}{2} + C_1 \]
\[ = x \tan x - \text{ log }\left| \sec x \right| - \frac{x^2}{2} + C_1 + C_2 \]
` = x tan - log | sec x | - x^2/2 + C_1 + C_2 ( where C = C_1 + C_2 )`
\[ = x\int \sec^2 x - \int\left\{ \frac{d}{dx}\left( x \right)\int \sec^2 \text{ x dx } \right\}dx - \frac{x^2}{2} + C_1 \]
\[ = x . \tan x - \int1 . \text{ tan x dx } - \frac{x^2}{2} + C_1 \]
\[ = x \tan x - \text{ log }\left| \sec x \right| - \frac{x^2}{2} + C_1 + C_2 \]
` = x tan - log | sec x | - x^2/2 + C_1 + C_2 ( where C = C_1 + C_2 )`
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]
\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]
\[\int\left( x^e + e^x + e^e \right) dx\]
\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]
\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]
\[\int\frac{1 - \cot x}{1 + \cot x} dx\]
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int x^2 \sqrt{x + 2} \text{ dx }\]
\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
\[\int \sec^4 2x \text{ dx }\]
\[\int \cos^7 x \text{ dx } \]
\[\int\frac{dx}{e^x + e^{- x}}\]
\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
\[\int x^2 \sin^2 x\ dx\]
\[\int2 x^3 e^{x^2} dx\]
\[\int x^2 \tan^{- 1} x\text{ dx }\]
\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\sqrt{2x - x^2} \text{ dx}\]
\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]
Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\left( x - 1 \right) e^{- x} dx\] is equal to
\[\int \text{cosec}^2 x \text{ cos}^2 \text{ 2x dx} \]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]
\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]
\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int\frac{1}{\sec x + cosec x}\text{ dx }\]
\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]
\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]