मराठी

∫ X Tan 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

 
` ∫  x tan ^2 x dx 
बेरीज

उत्तर

\[\int x \tan^2 x\ dx\]
= ​∫ x (sec2 x – 1) dx
\[= \int x_I . \sec_{II} ^2 \text{ x  dx }- \int \text{ x dx }\]
\[ = x\int \sec^2 x - \int\left\{ \frac{d}{dx}\left( x \right)\int \sec^2 \text{ x  dx } \right\}dx - \frac{x^2}{2} + C_1 \]
\[ = x . \tan x - \int1 . \text{ tan x dx } - \frac{x^2}{2} + C_1 \]
\[ = x \tan x - \text{ log }\left| \sec x \right| - \frac{x^2}{2} + C_1 + C_2 \]
`   = x tan - log    | sec x |  - x^2/2 + C_1  + C_2    ( where    C = C_1 + C_2 )`
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 32 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int \cos^2 \text{nx dx}\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int \sin^4 2x\ dx\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×