मराठी

∫ ( 3 Sin X − 2 ) Cos X 13 − Cos 2 X − 7 Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
बेरीज

उत्तर

I= \[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
 

  =  \[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 -(1 -  \ sin ^2  x) - 7\sin x}dx\]    `(∵  cos^2x =1 - sin^2 x)`
\[ = \int\frac{\left( 3\sin x - 2 \right) \cos x}{\text{ sin^}2 x - 7\sin x + 12}dx\]
\[ = \int\frac{\left( 3\sin x - 2 \right) \cos x}{\text{ sin^}2 x - 4\sin x - 3\text{ sin } x + 12}dx\]
\[ = \int\frac{\left( 3\sin x - 2 \right) \cos x}{\sin x\left( \sin x - 4 \right) - 3\left( \sin x - 4 \right)}dx\]
\[ = \int\frac{\left( 3\sin x - 2 \right)\cos x}{\left( \sin x - 3 \right)\left( \sin x - 4 \right)}dx\]

\[\text{ Let sin x }= t\]
\[ \Rightarrow \text{  cos x dx }= dt\]
\[ \therefore I = \int\frac{\left( 3t - 2 \right)}{\left( t - 3 \right)\left( t - 4 \right)}dt\]

Using partial fraction, we get

\[\frac{\left( 3t - 2 \right)}{\left( t - 3 \right)\left( t - 4 \right)} = \frac{A}{\left( t - 3 \right)} + \frac{B}{\left( t - 4 \right)} = \frac{A\left( t - 4 \right) + B\left( t - 3 \right)}{\left( t - 3 \right)\left( t - 4 \right)}\]
\[ \Rightarrow 3t - 2 = (A + B)t - 4A - 3B\]

Comparing coefficients, we get

A = - 7 and = 10

So, 

\[I = - 7\int\frac{1}{\left( t - 3 \right)}dt + 10\int\frac{1}{\left( t - 4 \right)}dt\]

\[\Rightarrow I = - 7\text{ ln }\left| t - 3 \right| + 10\text{ ln}\left| t - 4 \right| + c\]
\[ \therefore I = - 7\text{ ln }\left| \sin x - 3 \right| + 10 \text{ ln }\left| \sin x - 4 \right| + c\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.19 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.19 | Q 14 | पृष्ठ १०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \cos^{- 1} \left( \sin x \right) dx\]

`  ∫  sin 4x cos  7x  dx  `

` ∫   cos  3x   cos  4x` dx  

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \sin^5 x \cos x \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{1}{1 - \cot x} dx\]

\[\int x \text{ sin 2x dx }\]

\[\int \log_{10} x\ dx\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×