Advertisements
Advertisements
प्रश्न
\[\int x^2 \tan^{- 1} x\ dx\]
बेरीज
उत्तर
\[\text{We have}, \]
\[I = \int x^2 \tan^{- 1} x \text{ dx }\]
\[\text{Considering} \tan^{- 1} \text{ x as first function and x}^2 \text{as second function}\]
\[I = \tan^{- 1} x\frac{x^3}{3} - \int\left( \frac{1}{1 + x^2} \times \frac{x^3}{3} \right)dx\]
\[ = \tan^{- 1} x\frac{x^3}{3} - \frac{1}{3}\int\frac{x^3 dx}{1 + x^2}\]
\[ = \tan^{- 1} x\frac{x^3}{3} - \frac{1}{3}\int\left( \frac{x^2 x}{1 + x^2} \right)dx\]
\[\text{ Putting 1 + x}^2 = t\]
\[ \Rightarrow x^2 = t - 1\]
\[ \Rightarrow \text{ 2x dx = dt}\]
\[ \Rightarrow x\text{ dx }= \frac{dt}{2}\]
\[ \therefore I = \tan^{- 1} x\frac{x^3}{3} - \frac{1}{6}\int\left( \frac{t - 1}{t} \right)dt\]
\[ = \frac{x^3}{3} \tan^{- 1} x - \frac{1}{6}\int dt + \frac{1}{6}\int\frac{dt}{t}\]
\[ = \frac{x^3}{3} \tan^{- 1} x - \frac{1}{6}t + \frac{1}{6}\text{ log }\left| t \right| + C\]
\[ = \frac{x^3}{3} \tan^{- 1} x - \frac{1}{6}\left( 1 + x^2 \right) + \frac{1}{6}\text{ log }\left| 1 + x^2 \right| + C\]
\[ = \frac{x^3}{3} \tan^{- 1} x - \frac{x^2}{6} + \frac{1}{6}\text{ log} \left| x^2 + 1 \right| + C'\text{ Where C' = C }- \frac{1}{6}\]
\[I = \int x^2 \tan^{- 1} x \text{ dx }\]
\[\text{Considering} \tan^{- 1} \text{ x as first function and x}^2 \text{as second function}\]
\[I = \tan^{- 1} x\frac{x^3}{3} - \int\left( \frac{1}{1 + x^2} \times \frac{x^3}{3} \right)dx\]
\[ = \tan^{- 1} x\frac{x^3}{3} - \frac{1}{3}\int\frac{x^3 dx}{1 + x^2}\]
\[ = \tan^{- 1} x\frac{x^3}{3} - \frac{1}{3}\int\left( \frac{x^2 x}{1 + x^2} \right)dx\]
\[\text{ Putting 1 + x}^2 = t\]
\[ \Rightarrow x^2 = t - 1\]
\[ \Rightarrow \text{ 2x dx = dt}\]
\[ \Rightarrow x\text{ dx }= \frac{dt}{2}\]
\[ \therefore I = \tan^{- 1} x\frac{x^3}{3} - \frac{1}{6}\int\left( \frac{t - 1}{t} \right)dt\]
\[ = \frac{x^3}{3} \tan^{- 1} x - \frac{1}{6}\int dt + \frac{1}{6}\int\frac{dt}{t}\]
\[ = \frac{x^3}{3} \tan^{- 1} x - \frac{1}{6}t + \frac{1}{6}\text{ log }\left| t \right| + C\]
\[ = \frac{x^3}{3} \tan^{- 1} x - \frac{1}{6}\left( 1 + x^2 \right) + \frac{1}{6}\text{ log }\left| 1 + x^2 \right| + C\]
\[ = \frac{x^3}{3} \tan^{- 1} x - \frac{x^2}{6} + \frac{1}{6}\text{ log} \left| x^2 + 1 \right| + C'\text{ Where C' = C }- \frac{1}{6}\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2} \text{dx} \]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]
\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]
\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]
\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]
\[\int x^3 \sin x^4 dx\]
\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]
\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]
` ∫ tan^3 x sec^2 x dx `
\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{ dx }\]
\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]
\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]
\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]
\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]
\[\int\sqrt{2x - x^2} \text{ dx}\]
\[\int\frac{x^2 + 1}{x^2 - 1} dx\]
\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]
\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\]
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]
\[\int \sec^4 x\ dx\]
\[\int \tan^5 x\ \sec^3 x\ dx\]
\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .