मराठी

∫ ( X Tan − 1 X ) ( 1 + X 2 ) 3 / 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I } = \int \frac{x \tan^{- 1} x}{\left( 1 + x^2 \right)^\frac{3}{2}}\text{ dx }\]

\[\text{ Putting x }= \tan \theta\]

\[ \Rightarrow dx = \sec^2  \text{ θ dθ }\]

\[\text{and}\ \theta = \tan^{- 1} x\]

\[ \therefore I = \int \frac{\left( \tan \theta \right) . \theta . \sec^2   \text{ θ dθ }}{\left( 1 + \tan^2 \theta \right)^\frac{3}{2}}\]

\[ = \int \frac{\theta . \tan \theta \sec^2   \text{ θ dθ }}{\left( \sec^2 \theta \right)^\frac{3}{2}}\]

\[ = \int \frac{\theta \tan \theta . \sec^2   \text{ θ dθ }}{\sec^3 \theta}\]

\[ = \int \frac{\theta . \tan \theta}{\sec \theta} d\theta\]

\[ = \int \theta_I . \sin_{II} \text{ θ dθ }\]

\[ = \theta\int\sin \text{ θ dθ }\] - \int\left\{ \frac{d}{d\theta}\left( \theta \right)\int\sin d\theta \right\}d\theta\]

\[ = \theta \left( - \cos \theta \right) - \int1 . \left( - \cos \theta \right) d\theta\]

\[ = - \theta \cos \theta + \sin \theta + C\]

\[ = \frac{- \theta}{\sec \theta} + \frac{1}{cosec   \text{ θ }} + C\]

\[ = \frac{- \theta}{\sqrt{1 + \tan^2 \theta}} + \frac{1}{\sqrt{1 + \cot^2 \theta}} + C\]

\[ = \frac{- \theta}{\sqrt{1 + \tan^2 \theta}} + \frac{\tan \theta}{\sqrt{\tan^2 \theta + 1}} + C\]

\[ = \frac{- \tan^{- 1} x}{\sqrt{1 + x^2}} + \frac{x}{\sqrt{x^2 + 1}} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 47 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

` ∫      tan^5    x   dx `


\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int x \sec^2 2x\ dx\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×