मराठी

∫ X 2 X 2 + 7 X + 10 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
बेरीज

उत्तर

\[\text{  Let  I } = \int\left( \frac{x^2}{x^2 + 7x + 10} \right)dx\]
\[\text{ Now }, \]



\[ \therefore \frac{x^2}{x^2 + 7x + 10} = 1 - \frac{\left( 7x + 10 \right)}{x^2 + 7x + 10}\]
\[ \Rightarrow \frac{x^2}{x^2 + 7x + 10} = 1 - \left( \frac{7x + 10}{x^2 + 2x + 5x + 10} \right)\]
\[\frac{x^2}{x^2 + 7x + 10} = 1 - \left( \frac{7x + 10}{x \left( x + 2 \right) + 5 \left( x + 2 \right)} \right)\]
\[\frac{x^2}{x^2 + 7x + 10} = 1 - \left[ \frac{7x + 10}{\left( x + 2 \right) \left( x + 5 \right)} \right] . . . . . \left( 1 \right)\]
\[\text{ Consider, }\]
\[\frac{7x + 10}{\left( x + 2 \right) \left( x + 5 \right)} = \frac{A}{\left( x + 2 \right)} + \frac{B}{x + 5}\]
\[7x + 10 = A \left( x + 5 \right) + B \left( x + 2 \right)\]
\[\text{ let } x + 5 = 0\]
\[x = - 5\]
\[ \Rightarrow 7 \left( - 5 \right) + 10 = A \times 0 + B \left( - 5 + 2 \right)\]
\[ - 25 = B \left( - 3 \right)\]
\[ \Rightarrow B = \frac{25}{3}\]
\[\text{ let } x + 2 = 0\]
\[x = - 2\]
\[7 \left( - 2 \right) + 10 = A \left( - 2 + 5 \right)\]
\[ \Rightarrow - 4 = A \left( 3 \right)\]
\[ \Rightarrow A = - \frac{4}{3}\]
\[\frac{7x + 10}{\left( x + 2 \right) \left( x + 5 \right)} = \frac{- 4}{3 \left( x + 2 \right)} + \frac{25}{3 \left( x + 5 \right)} . . . . . \left( 2 \right)\]
\[\text{ from }\left( 1 \right) \text{ and } \left( 2 \right)\]
\[\frac{x^2}{x^2 + 7x + 10} = 1 + \frac{4}{3 \left( x + 2 \right)} - \frac{25}{3 \left( x + 5 \right)}\]
\[ \Rightarrow \int\frac{x^2 dx}{x^2 + 7x + 10} = \int dx + \frac{4}{3}\int\frac{dx}{x + 2} - \frac{25}{3}\int\frac{dx}{x + 5}\]
\[ = x + \frac{4}{3} \text{ log } \left| x + 2 \right| - \frac{25}{3} \text{ log } \left| x + 5 \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.2 [पृष्ठ १०६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.2 | Q 5 | पृष्ठ १०६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int \cos^5 x\ dx\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int \log_{10} x\ dx\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×