हिंदी

∫ X 2 X 2 + 7 X + 10 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
योग

उत्तर

\[\text{  Let  I } = \int\left( \frac{x^2}{x^2 + 7x + 10} \right)dx\]
\[\text{ Now }, \]



\[ \therefore \frac{x^2}{x^2 + 7x + 10} = 1 - \frac{\left( 7x + 10 \right)}{x^2 + 7x + 10}\]
\[ \Rightarrow \frac{x^2}{x^2 + 7x + 10} = 1 - \left( \frac{7x + 10}{x^2 + 2x + 5x + 10} \right)\]
\[\frac{x^2}{x^2 + 7x + 10} = 1 - \left( \frac{7x + 10}{x \left( x + 2 \right) + 5 \left( x + 2 \right)} \right)\]
\[\frac{x^2}{x^2 + 7x + 10} = 1 - \left[ \frac{7x + 10}{\left( x + 2 \right) \left( x + 5 \right)} \right] . . . . . \left( 1 \right)\]
\[\text{ Consider, }\]
\[\frac{7x + 10}{\left( x + 2 \right) \left( x + 5 \right)} = \frac{A}{\left( x + 2 \right)} + \frac{B}{x + 5}\]
\[7x + 10 = A \left( x + 5 \right) + B \left( x + 2 \right)\]
\[\text{ let } x + 5 = 0\]
\[x = - 5\]
\[ \Rightarrow 7 \left( - 5 \right) + 10 = A \times 0 + B \left( - 5 + 2 \right)\]
\[ - 25 = B \left( - 3 \right)\]
\[ \Rightarrow B = \frac{25}{3}\]
\[\text{ let } x + 2 = 0\]
\[x = - 2\]
\[7 \left( - 2 \right) + 10 = A \left( - 2 + 5 \right)\]
\[ \Rightarrow - 4 = A \left( 3 \right)\]
\[ \Rightarrow A = - \frac{4}{3}\]
\[\frac{7x + 10}{\left( x + 2 \right) \left( x + 5 \right)} = \frac{- 4}{3 \left( x + 2 \right)} + \frac{25}{3 \left( x + 5 \right)} . . . . . \left( 2 \right)\]
\[\text{ from }\left( 1 \right) \text{ and } \left( 2 \right)\]
\[\frac{x^2}{x^2 + 7x + 10} = 1 + \frac{4}{3 \left( x + 2 \right)} - \frac{25}{3 \left( x + 5 \right)}\]
\[ \Rightarrow \int\frac{x^2 dx}{x^2 + 7x + 10} = \int dx + \frac{4}{3}\int\frac{dx}{x + 2} - \frac{25}{3}\int\frac{dx}{x + 5}\]
\[ = x + \frac{4}{3} \text{ log } \left| x + 2 \right| - \frac{25}{3} \text{ log } \left| x + 5 \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.2 [पृष्ठ १०६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.2 | Q 5 | पृष्ठ १०६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int \sin^4 2x\ dx\]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int \sin^5 x\ dx\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×