हिंदी

∫ X 2 X 2 + 7 X + 10 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]
योग

उत्तर

\[Let\text{ I } = \int\left( \frac{x^2}{x^2 + 7x + 10} \right)dx\]
\[\text{ Now }, \]


\[ x^2 + 7x + 10 {x^2}^1 \]
\[ x^2 + 7x + 10\]
\[ - - - \]
\[ - 7x - 10 \]
\[ \therefore \frac{x^2}{x^2 + 7x + 10} = 1 - \frac{\left( 7x + 10 \right)}{x^2 + 7x + 10}\]
\[ \Rightarrow \frac{x^2}{x^2 + 7x + 10} = 1 - \left( \frac{7x + 10}{x^2 + 2x + 5x + 10} \right)\]
\[\frac{x^2}{x^2 + 7x + 10} = 1 - \left( \frac{7x + 10}{x \left( x + 2 \right) + 5 \left( x + 2 \right)} \right)\]
\[\frac{x^2}{x^2 + 7x + 10} = 1 - \left[ \frac{7x + 10}{\left( x + 2 \right) \left( x + 5 \right)} \right] . . . . . \left( 1 \right)\]
\[\text{ Consider }, \]
\[\frac{7x + 10}{\left( x + 2 \right) \left( x + 5 \right)} = \frac{A}{\left( x + 2 \right)} + \frac{B}{x + 5}\]
\[7x + 10 = A \left( x + 5 \right) + B \left( x + 2 \right)\]
\[\text{ let } x + 5 = 0\]
\[x = - 5\]
\[ \Rightarrow 7 \left( - 5 \right) + 10 = A \times 0 + B \left( - 5 + 2 \right)\]
\[ - 25 = B \left( - 3 \right)\]
\[ \Rightarrow B = \frac{25}{3}\]
\[\text{ let } x + 2 = 0\]
\[x = - 2\]
\[7 \left( - 2 \right) + 10 = A \left( - 2 + 5 \right)\]
\[ \Rightarrow - 4 = A \left( 3 \right)\]
\[ \Rightarrow A = - \frac{4}{3}\]
\[\frac{7x + 10}{\left( x + 2 \right) \left( x + 5 \right)} = \frac{- 4}{3 \left( x + 2 \right)} + \frac{25}{3 \left( x + 5 \right)} . . . . . \left( 2 \right)\]
\[\text{ from } \left( 1 \right) \text { and } \left( 2 \right)\]
\[\frac{x^2}{x^2 + 7x + 10} = 1 + \frac{4}{3 \left( x + 2 \right)} - \frac{25}{3 \left( x + 5 \right)}\]
\[ \Rightarrow \int\frac{x^2 dx}{x^2 + 7x + 10} = \int dx + \frac{4}{3}\int\frac{dx}{x + 2} - \frac{25}{3}\int\frac{dx}{x + 5}\]
\[ = x + \frac{4}{3} \text{ log } \left| x + 2 \right| - \frac{25}{3} \text{ log } \left| x + 5 \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.2 [पृष्ठ १०६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.2 | Q 5 | पृष्ठ १०६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int x \cos^3 x\ dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×