हिंदी

∫ X ( X − 3 ) √ X + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]
योग

उत्तर

`\text{ We  have,} `
\[I = \int \frac{x dx}{\left( x - 3 \right) \sqrt{x + 1}}\]
\[\text{ Putting  x }+ 1 = t^2 \]
\[ \Rightarrow x = t^2 - 1\]
\[\text{ Diff  both sides }\]
\[dx = 2t \text{ dt }\]
\[ \therefore I = \int \frac{\left( t^2 - 1 \right)2t    \text{ dt }}{\left( t^2 - 1 - 3 \right)t}\]
\[ = 2\int \left( \frac{t^2 - 1}{t^2 - 4} \right)dt\]
\[ = 2\int\left( \frac{t^2 - 4 + 3}{t^2 - 4} \right)dt\]
\[ = 2\int\left( \frac{t^2 - 4}{t^2 - 4} \right)dt + 6\int \frac{dt}{t^2 - 2^2}\]
\[ = 2\int dt + 6\int\frac{dt}{t^2 - 2^2}\]
\[ = 2t + 6 \times \frac{1}{2 \times 2}\text{ log }\left| \frac{t - 2}{t + 2} \right| + C\]
\[ = 2\sqrt{x + 1} + \frac{3}{2}\text{ log} \left| \frac{t - 2}{t + 2} \right| + C\]
\[ = 2\sqrt{x + 1} + \frac{3}{2}\text{ log }\left| \frac{\sqrt{x + 1} - 2}{\sqrt{x + 1} + 2} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.32 [पृष्ठ १९६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.32 | Q 5 | पृष्ठ १९६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

`∫     cos ^4  2x   dx `


\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


` ∫  sec^6   x  tan    x   dx `

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x e^x \text{ dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int \log_{10} x\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×