हिंदी

∫ 1 ( X 2 + 1 ) √ X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]
योग

उत्तर

\[\text{ We  have,} \]
\[I = \int \frac{dx}{\left( x^2 + 1 \right) \sqrt{x}}\]
\[\text{ Putting  x }= t^2 \]
\[dx = 2t \text{ dt }\]
\[ \therefore I = \int \frac{2t \text{ dt }}{\left[ \left( t^2 \right)^2 + 1 \right]t}\]
\[ = 2\int \frac{dt}{t^4 + 1}\]
\[ = \int \left[ \frac{\left( t^2 + 1 \right) - \left( t^2 - 1 \right)}{\left( t^4 + 1 \right)} \right]dt\]
\[ = \int\left( \frac{t^2 + 1}{t^4 + 1} \right)dt - \int\left( \frac{t^2 - 1}{t^4 + 1} \right)dt\]
\[\text{Dividing numerator & denominator by }t^2 \]
\[I = \int\left( \frac{1 + \frac{1}{t^2}}{t^2 + \frac{1}{t^2}} \right)dt - \int \frac{\left( 1 - \frac{1}{t^2} \right)dt}{t^2 + \frac{1}{t^2}}\]
\[ = \int \frac{\left( 1 + \frac{1}{t^2} \right)dt}{t^2 + \frac{1}{t^2} - 2 + 2} - \int \frac{\left( 1 - \frac{1}{t^2} \right)dt}{t^2 + \frac{1}{t^2} + 2 - 2}\]
\[ = \int \frac{\left( 1 + \frac{1}{t^2} \right)dt}{\left( t - \frac{1}{t} \right)^2 + \left( \sqrt{2} \right)^2} - \int \frac{\left( 1 - \frac{1}{t^2} \right)dt}{\left( t + \frac{1}{t} \right)^2 - \left( \sqrt{2} \right)^2}\]
\[\text{ Putting t }- \frac{1}{t} = p\]
\[ \Rightarrow \left( 1 + \frac{1}{t^2} \right)dt = dp\]
\[\text{ Putting  t }+ \frac{1}{t} = q\]
\[ \Rightarrow \left( 1 - \frac{1}{t^2} \right)dt = dq\]
\[ \therefore I = \int\frac{dp}{p^2 + \left( \sqrt{2} \right)^2} - \int\frac{dq}{q^2 - \left( \sqrt{2} \right)^2}\]
\[ = \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{p}{\sqrt{2}} \right) - \frac{1}{2\sqrt{2}}\text{ log }\left| \frac{q - \sqrt{2}}{q + \sqrt{2}} \right| + C\]
\[ = \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{t - \frac{1}{t}}{\sqrt{2}} \right) - \frac{1}{2\sqrt{2}}\text{ log }\left| \frac{t + \frac{1}{t} - \sqrt{2}}{t + \frac{1}{t} + \sqrt{2}} \right| + C\]
\[ = \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{t^2 - 1}{\sqrt{2}t} \right) - \frac{1}{2\sqrt{2}}\text{ log }\left| \frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1} \right| + C\]
\[ = \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{x - 1}{\sqrt{2x}} \right) - \frac{1}{2\sqrt{2}}\text{ log} \left| \frac{x - \sqrt{2x} + 1}{x + \sqrt{2x} + 1} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.32 [पृष्ठ १९६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.32 | Q 6 | पृष्ठ १९६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

` ∫   tan   x   sec^4  x   dx  `


\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x \cos^2 x\ dx\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int \sin^3 \sqrt{x}\ dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \tan^4 x\ dx\]

\[\int \cot^5 x\ dx\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×