हिंदी

∫ 1 √ X + √ X + 1 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]

योग

उत्तर

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}}dx\]
\[\text{Rationalising the denominator}, \]
\[ = \int\frac{\left( \sqrt{x + 1} - \sqrt{x} \right)}{\left( \sqrt{x + 1} + \sqrt{x} \right) \left( \sqrt{x + 1} - \sqrt{x} \right)}dx\]
\[ = \int\frac{\left( \sqrt{x + 1} - \sqrt{x} \right)}{x + 1 - x}dx\]
\[ = \int\left( \sqrt{x + 1} - \sqrt{x} \right) dx\]
\[ = \int\left[ \left( x + 1 \right)^\frac{1}{2} - x^\frac{1}{2} \right]dx\]
\[ = \frac{\left( x + 1 \right)^\frac{1}{2} + 1}{\frac{1}{2} + 1} - \frac{x^\frac{1}{2} + 1}{\frac{1}{2} + 1} + C\]
\[ = \frac{2}{3} \left( x + 1 \right)^\frac{3}{2} - \frac{2}{3} x^\frac{3}{2} + C\]
\[ = \frac{2}{3}\left[ \left( x + 1 \right)^\frac{3}{2} - x^\frac{3}{2} \right] + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 1 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int \cot^6 x \text{ dx }\]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int \sec^6 x\ dx\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×