Advertisements
Advertisements
प्रश्न
\[\int \sin^5 x \text{ dx }\]
योग
उत्तर
∫ sin5 x dx
= ∫ sin4 x . sin x dx
= ∫ (1 – cos2 x)2 sin x dx
= ∫ (1 – cos4 x – 2 cos2 x) sin x dx
Let cos x = t
⇒ – sin x dx = dt
⇒ sin x dx = – dt
Now, ∫ (1 – cos4 x – 2 cos2 x) sin x dx
=–∫ (1 + t4 – 2t2) dt
\[= - \left[ t + \frac{t^5}{5} - \frac{2 t^3}{3} \right] + C\]
\[ = - t - \frac{t^5}{5} + \frac{2 t^3}{3} + C\]
\[ = - \cos x + \frac{2}{3} \cos^3 x - \frac{\cos^5 x}{5} + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]
\[\int \cos^{- 1} \left( \sin x \right) dx\]
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]
\[\int\left( x + 2 \right) \sqrt{3x + 5} \text{dx} \]
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
` ∫ tan 2x tan 3x tan 5x dx `
\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]
\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]
\[\int\frac{x^2 - 1}{x^2 + 4} dx\]
\[\int\frac{e^x}{1 + e^{2x}} dx\]
\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]
\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]
\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{ dx}\]
\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int x \sin x \cos x\ dx\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]
\[\int\sqrt{2x - x^2} \text{ dx}\]
\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]
\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]
\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]
\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
\[\int \cot^5 x\ dx\]
\[\int x \sec^2 2x\ dx\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]