हिंदी

∫ 1 √ ( X − α ) ( β − X ) D X , ( β > α ) - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]
योग

उत्तर

\[\text{Let I } = \int\frac{dx}{\sqrt{\left( x - \alpha \right) \left( \beta - x \right)}}\]

\[ = \int\frac{dx}{\sqrt{\  β x - x^2 -  αβ+ α x }}\]

\[ = \int\frac{dx}{\sqrt{- x^2 + \left( \alpha + \beta \right) x - \alpha\beta}}\]

\[ = \int\frac{dx}{\sqrt{- \left[ x^2 - \left( \alpha + \beta \right) x + \alpha\beta \right]}}\]

\[ = \int\frac{dx}{\sqrt{- \left[ x^2 - \left( \alpha + \beta \right) x + \left( \frac{\alpha + \beta}{2} \right)^2 - \left( \frac{\alpha + \beta}{2} \right)^2 + \alpha\beta \right]}}\]

\[ = \int\frac{dx}{\sqrt{- \left\{ x - \left( \frac{\alpha + \beta}{2} \right) \right\}^2 + \left( \frac{\alpha + \beta}{2} \right)^2 - \alpha\beta}}\]

\[ = \int\frac{dx}{\sqrt{- \left[ x - \left( \frac{\alpha + \beta}{2} \right) \right]^2 + \frac{\left( \alpha + \beta \right)^2 - 4\alpha\beta}{4}}}\]

\[ = \int\frac{dx}{\sqrt{- \left[ x - \left( \frac{\alpha + \beta}{2} \right) \right]^2 + \left( \frac{\alpha - \beta}{2} \right)^2}}\]

\[ = \int\frac{dx}{\sqrt{\left( \frac{\alpha - \beta}{2} \right)^2 - \left( x - \left( \frac{\alpha + \beta}{2} \right) \right)^2}}\]

\[ = \sin^{- 1} \left[ \frac{x - \left( \frac{\alpha + \beta}{2} \right)}{\frac{\alpha - \beta}{2}} \right] + C\]

\[ = \sin^{- 1} \left( \frac{2x - \alpha - \beta}{\alpha - \beta} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.17 [पृष्ठ ९३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.17 | Q 5 | पृष्ठ ९३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \sin^5 x \text{ dx }\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×