हिंदी

∫ Sin 5 X Cos 4 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
योग

उत्तर

\[\int\frac{\sin^5 x}{\cos^4 x}  \text{  dx  }\]
\[ = \int\left( \frac{\sin^4 x . \sin x}{\cos^4 x} \right)\text{ dx }\]
\[ = \int\frac{\left( \sin^2 x \right)^2 . \sin x}{\cos^4 x}\text{ dx }\]
\[ = \int \frac{\left( 1 - \cos^2 x \right)^2 \sin x}{\cos^4 x} \text{ dx }\]
\[ = \int \left( \frac{1 + \cos^4 x - 2 \cos^2 x}{\cos^4 x} \right)\text{ sin x dx }\]
\[ = \int \left( \frac{1}{\cos^4 x} + 1 - \frac{2}{\cos^2 x} \right)\text{  sin    x   dx }\]
\[Let \text{ cos x  }= t\]
\[ \Rightarrow - \text{ sin x } = \frac{dt}{dx}\]
\[ \Rightarrow \text{         sin     x   dx    } = - dt\]
\[Now, \int \left( \frac{1}{\cos^4 x} + 1 - \frac{2}{\cos^2 x} \right)\text{         sin     x   dx    }  \]
\[ = - \int \left( t^{- 4} + 1 - 2 t^{- 2} \right)dt\]
\[ = - \left[ \frac{t^{- 4 + 1}}{- 4 + 1} + t - \frac{2 t^{- 2 + 1}}{- 2 + 1} \right] + C\]
\[ = - \left[ - \frac{1}{3 t^3} + t + \frac{2}{t} \right] + C\]
\[ = \frac{1}{3 t^3} - t - \frac{2}{t} + C\]
\[ = \frac{1}{3 \cos^3 x} - \cos x - \frac{2}{\cos x} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.09 | Q 72 | पृष्ठ ५९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int x \cos^2 x\ dx\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×