हिंदी

∫ X 2 √ X + 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]
योग

उत्तर

\[\int x^2 \sqrt{x + 2} \text{ dx  }\]
\[\text{Let x + 2 }= t\]
\[ \Rightarrow x = t - 2\]
\[ \Rightarrow dx = dt\]
\[\text{Now,} \int x^2 \sqrt{x + 2} \text{ dx }\]
\[ = \int \left( t - 2 \right)^2 \sqrt{t} \text{ dt }\]
\[ = \int\left( 4^2 - 4t + 4 \right) t^\frac{1}{2} \text{ dt }\]
\[ = \int\left( t^{2 + \frac{1}{2}} - 4 t^{1 + \frac{1}{2}} + 4 t^\frac{1}{2} \right)\text{ dt }\]
\[ = \int\left( t^\frac{5}{2} - 4 t^\frac{3}{2} + 4 t^\frac{1}{2} \right)\text{ dt }\]
\[ = \left[ \frac{t^\frac{5}{2} + 1}{\frac{5}{2} + 1} \right] - 4\left[ \frac{t^\frac{3}{2} + 1}{\frac{3}{2} + 1} \right] + 4\left[ \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + C\]
\[ = \frac{2}{7} t^\frac{7}{2} - \frac{8}{5} t^\frac{5}{2} + \frac{8}{3} t^\frac{3}{2} + C\]
\[ = \frac{2}{7} \left( x + 2 \right)^\frac{7}{2} - \frac{8}{5} \left( x + 2 \right)^\frac{5}{2} + \frac{8}{3} \left( x + 2 \right)^\frac{3}{2} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.10 [पृष्ठ ६५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.10 | Q 1 | पृष्ठ ६५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int \sec^4 2x \text{ dx }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int x^2 \sin^2 x\ dx\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×