Advertisements
Advertisements
प्रश्न
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
योग
उत्तर
\[\text{ Let I }= \int e^x \left( \cot x - {cosec}^2 x \right)dx\]
\[\text{ here f(x) } = \text{ cot x put e}^x f(x) = t\]
\[ f'(x) = - {cosec}^2 x\]
\[\text{ let e}^x \cot x = t\]
\[\text{ Diff both sides w . r . t x }\]
\[ e^x \cot x + e^x \left( - {cosec}^2 x \right) = \frac{dt}{dx}\]
\[ \Rightarrow e^x \left( \cot x - {cosec}^2 x \right)dx = dt\]
\[ \therefore \int e^x \left( \cot x - {cosec}^2 x \right)dx = \int dt\]
\[ = t + C\]
\[ = e^x \cot x + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]
\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
\[\int\frac{1}{1 + \sqrt{x}} dx\]
Evaluate the following integrals:
\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]
\[\int\frac{1}{a^2 x^2 + b^2} dx\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]
\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]
\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
\[\int x \cos^2 x\ dx\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
\[\int x^3 \tan^{- 1}\text{ x dx }\]
\[\int \sin^3 \sqrt{x}\ dx\]
\[\int \cos^3 \sqrt{x}\ dx\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]
\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]
\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{ dx }\]
\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]
\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int\sqrt{x^2 - a^2} \text{ dx}\]
\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]
\[\int\frac{\cos^7 x}{\sin x} dx\]