Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int \frac{1}{1 - \sin x + \cos x}dx\]
\[\text{ Putting sin x}= \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \text{ and } cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ = \int \frac{1}{1 - \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ = \int \frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{\left( 1 + \tan^2 \frac{x}{2} \right) - 2 \tan x\left( 2 + 1 - \tan^2 \frac{x}{2} \right)}dx\]
\[ = \int \frac{\sec^2 \frac{x}{2}}{2 - 2 \tan \left( \frac{x}{2} \right)}dx\]
\[ = \frac{1}{2}\int \frac{\sec^2 \left( \frac{x}{2} \right)}{1 - \tan \left( \frac{x}{2} \right)}dx\]
\[Let \left[ 1 - \tan \left( \frac{x}{2} \right) \right] = t\]
\[ \Rightarrow - \text{ sec}^2 \left( \frac{x}{2} \right) \times \frac{1}{2}dx = dt\]
\[ \Rightarrow \text{ sec}^2 \left( \frac{x}{2} \right)dx = - \text{ 2dt }\]
\[ \therefore I = \frac{1}{2} \int \frac{- 2 dt}{t}\]
\[ = - \int \frac{dt}{t}\]
\[ = - \text{ ln }\left| t \right| + C\]
\[ = - \text{ ln }\left| 1 - \tan \frac{x}{2} \right| + C\]
APPEARS IN
संबंधित प्रश्न
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
Find: `int (3x +5)/(x^2+3x-18)dx.`