Advertisements
Advertisements
प्रश्न
\[\int \cos^2 \frac{x}{2} dx\]
योग
उत्तर
\[\int \cos^2 \frac{x}{2} dx\]
\[ = \int\left( \frac{1 + \cos x}{2} \right)dx \left[ \therefore \cos^2 \frac{x}{2} = \frac{1 + \cos x}{2} \right]\]
\[ = \frac{1}{2}\int\left( 1 + \cos x \right)dx\]
\[ = \frac{1}{2}\left[ x + \sin x \right] + C\]
\[ = \int\left( \frac{1 + \cos x}{2} \right)dx \left[ \therefore \cos^2 \frac{x}{2} = \frac{1 + \cos x}{2} \right]\]
\[ = \frac{1}{2}\int\left( 1 + \cos x \right)dx\]
\[ = \frac{1}{2}\left[ x + \sin x \right] + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]
\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]
\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]
\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]
\[\int x^3 \sin x^4 dx\]
\[\int \cot^5 x \text{ dx }\]
\[\int\frac{e^x}{1 + e^{2x}} dx\]
\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]
\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]
\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]
\[\int\frac{x}{x^2 + 3x + 2} dx\]
\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]
\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int x^2 \text{ cos x dx }\]
\[\int e^x \sec x \left( 1 + \tan x \right) dx\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{x^3 - 1}{x^3 + x} dx\]
\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]
\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to
\[\int \sec^2 x \cos^2 2x \text{ dx }\]
\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]
\[\int\frac{1}{e^x + 1} \text{ dx }\]
\[\int \tan^5 x\ dx\]
\[\int\frac{x + 1}{x^2 + 4x + 5} \text{ dx}\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int\sqrt{a^2 - x^2}\text{ dx }\]