Advertisements
Advertisements
प्रश्न
\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]
योग
उत्तर
\[\int \tan^{- 1} \left[ \frac{\sin \left( 2x \right)}{1 + \cos2x} \right]dx\]
`= ∫ tan ^-1 [ (2 sin x cos x) / ( 2 cos^2 x)] `dx ` [∴ sin 2x = 2 sin x cos x & 1 + cos 2x = 2 cos ^2 x ]`
\[ = \int \tan^{- 1} \left[ \tan x \right]\]
\[ = \int \tan^{- 1} \left[ \tan x \right]\]
` = ∫ x dx `
\[ = \frac{x^2}{2} + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\frac{x^2 + x + 5}{3x + 2} dx\]
` ∫ cos 3x cos 4x` dx
` = ∫ root (3){ cos^2 x} sin x dx `
\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]
\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]
\[\int \tan^3 \text{2x sec 2x dx}\]
\[\int\frac{1}{2 x^2 - x - 1} dx\]
` ∫ { x^2 dx}/{x^6 - a^6} dx `
\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]
\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]
\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{ dx }\]
\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]
\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]
\[\int\frac{1}{5 + 4 \cos x} dx\]
\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]
\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{ dx }\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} dx\]
\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]
\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]
\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]
\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\] is equal to
\[\int\sqrt{x^2 - a^2} \text{ dx}\]
\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]
\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]