हिंदी

∫ 1 2 X 2 − X − 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{2 x^2 - x - 1} dx\]
योग

उत्तर

\[\int\frac{dx}{2 x^2 - x - 1}\]
\[ = \frac{1}{2}\int\frac{dx}{x^2 - \frac{x}{2} - \frac{1}{2}}\]
\[ = \frac{1}{2}\int\frac{dx}{x^2 - \frac{x}{2} + \left( \frac{1}{4} \right)^2 - \left( \frac{1}{4} \right)^2 - \frac{1}{2}}\]
\[ = \frac{1}{2}\int\frac{dx}{\left( x - \frac{1}{4} \right)^2 - \frac{1}{16} - \frac{1}{2}}\]
\[ = \frac{1}{2}\int\frac{dx}{\left( x - \frac{1}{4} \right)^2 - \left( \frac{1 + 8}{16} \right)}\]
\[ = \frac{1}{2}\int\frac{dx}{\left( x - \frac{1}{4} \right)^2 - \left( \frac{3}{4} \right)^2}\]
\[\text{ let x } - \frac{1}{4} = t\]
\[ \Rightarrow dx = dt\]

\[Now, \frac{1}{2}\int\frac{dx}{\left( x - \frac{1}{2} \right)^2 - \left( \frac{3}{4} \right)^2}\]
\[ = \frac{1}{2}\int\frac{dt}{t^2 - \left( \frac{3}{4} \right)^2}\]
\[ = \frac{1}{2}\int\frac{dt}{t^2 - \left( \frac{3}{4} \right)^2}\]
\[ = \frac{1}{2 \times \frac{3}{4}} \times \frac{1}{2} \text{ log }\left| \frac{t - \frac{3}{4}}{t + \frac{3}{4}} \right| + C\]
\[ = \frac{2}{3} \times \frac{1}{2} \text{ log }\left| \frac{x - \frac{1}{4} - \frac{3}{4}}{x - \frac{1}{4} + \frac{3}{4}} \right| + C\]
\[ = \frac{2}{3} \times \frac{1}{2} \text{ log } \left| \frac{x - 1}{x + \frac{1}{2}} \right| + C\]
\[ = \frac{1}{3} \text{ log }\left| \frac{2\left( x - 1 \right)}{2x + 1} \right| + C\]
\[ = \frac{1}{3} \left[ \text{ log }\left| \frac{\left( x - 1 \right)}{2x + 1} \right| + \text{ log }\left| 2 \right| \right] + C\]
\[ = \frac{1}{3} \text{ log }\left| \frac{x - 1}{2x + 1} \right| + \frac{1}{3} \text{ log }\left| 2 \right| + C\]
\[ = \frac{1}{3} \text{ log }\left| \frac{x - 1}{2x + 1} \right| + C' \left[ \because C' = \frac{1}{3} \text{ log } \left| 2 \right| + C \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.15 [पृष्ठ ८६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.15 | Q 4 | पृष्ठ ८६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

` = ∫1/{sin^3 x cos^ 2x} dx`


Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int \sin^4 2x\ dx\]

\[\int \tan^4 x\ dx\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×