हिंदी

∫ 1 a 2 X 2 − B 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

` ∫  {1}/{a^2 x^2- b^2}dx`
योग

उत्तर

\[\int\frac{dx}{a^2 x^2 - b^2} \]
\[ = \frac{1}{a^2}\int\frac{dx}{x^2 - \left( \frac{b}{a} \right)^2}\]
\[ = \frac{1}{a^2} \times \frac{1}{2\frac{b}{a}} \log \left| \frac{x - \frac{b}{a}}{x + \frac{b}{a}} \right| + C \left[ \therefore \int\frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C \right]\]
` = \text{1}/{2ab} \text{ log }\| \frac{ax - b}{ax + b}| + C `

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.14 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.14 | Q 2 | पृष्ठ ८३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int \cot^6 x \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×