हिंदी

∫ 1 √ x 2 − a 2 dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
योग

उत्तर

\[\text{ Let I }= \int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx}\]

\[\text{  Putting  x = a  sec θ }  \]

\[ \Rightarrow \text{ dx = a sec θ   tan   θ   \text{  dθ}} \]

\[ \therefore I = \int\frac{a \sec\theta \tan  θ    \text{ dθ} }{\sqrt{a^2 \sec^2 \theta - a^2}}\]

\[ = \int\frac{{a \sec\theta\tan  θ    \text{ dθ} }}{a \cdot \tan\theta}\]

\[ = \int\sec\tan  θ    \text{ dθ} \]

\[ = \text{ ln }\left| \sec\theta + \tan\theta \right| + C\]

\[ = \text{ ln} \left| \sec\theta + \sqrt{\sec^2 \theta - 1} \right| + C\]

\[ = \text{ ln }\left| \frac{x}{a} + \sqrt{\left( \frac{x}{a} \right)^2 - 1} \right| + C\]

\[ = \text{ ln} \left| \frac{x + \sqrt{x^2 - a^2}}{a} \right| + C\]

\[ = \text{ ln} \left| x + \sqrt{x^2 - a^2} \right| - \text{ ln a} + C\]

\[ = \text{ ln} \left| x + \sqrt{x^2 - a^2} \right| + C'\]

\[\text{ where C'  = C }- \text{ ln  a }\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 42 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int \cot^6 x \text{ dx }\]

\[\int \sin^5 x \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int \sin^4 2x\ dx\]

\[\int \cos^5 x\ dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×