Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int\sqrt{\frac{1 - x}{1 + x}} dx\]
\[ = \int\sqrt{\frac{\left( 1 - x \right)\left( 1 - x \right)}{\left( 1 + x \right)\left( 1 - x \right)}} dx\]
\[ = \int\left( \frac{1 - x}{\sqrt{1 - x^2}} \right) dx\]
\[ = \int\frac{dx}{\sqrt{1 - x^2}} - \int\frac{x dx}{\sqrt{1 - x^2}}\]
\[\text{ Putting }1 - x^2 = t\]
\[ \Rightarrow \text{ - 2x dx } = dt\]
\[ \Rightarrow \text{ x dx }= - \frac{dt}{2}\]
\[\text{ Then, } \]
\[I = \int\frac{dx}{\sqrt{1 - x^2}} + \frac{1}{2}\int\frac{dt}{\sqrt{t}}\]
\[ = \sin^{- 1} \left( x \right) + \frac{1}{2} \times 2\sqrt{t} + C\]
\[ = \sin^{- 1} \left( x \right) + \sqrt{1 - x^2} + C\]
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
`∫ cos ^4 2x dx `
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]