हिंदी

∫ √ 1 − X 1 + X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
योग

उत्तर

\[\text{ Let I }= \int\sqrt{\frac{1 - x}{1 + x}} dx\]
\[ = \int\sqrt{\frac{\left( 1 - x \right)\left( 1 - x \right)}{\left( 1 + x \right)\left( 1 - x \right)}} dx\]
\[ = \int\left( \frac{1 - x}{\sqrt{1 - x^2}} \right) dx\]
\[ = \int\frac{dx}{\sqrt{1 - x^2}} - \int\frac{x dx}{\sqrt{1 - x^2}}\]
\[\text{ Putting }1 - x^2 = t\]
\[ \Rightarrow \text{ - 2x dx } = dt\]
\[ \Rightarrow \text{ x dx }= - \frac{dt}{2}\]
\[\text{ Then, } \]
\[I = \int\frac{dx}{\sqrt{1 - x^2}} + \frac{1}{2}\int\frac{dt}{\sqrt{t}}\]
\[ = \sin^{- 1} \left( x \right) + \frac{1}{2} \times 2\sqrt{t} + C\]
\[ = \sin^{- 1} \left( x \right) + \sqrt{1 - x^2} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.21 [पृष्ठ ११०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.21 | Q 14 | पृष्ठ ११०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

`∫     cos ^4  2x   dx `


\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

`int 1/(cos x - sin x)dx`

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×