Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
योग
उत्तर
` Note: "Here, we are considering log x as" log_e x . `
\[\text{Let I }= \int\frac{1}{x \log x \log\left( \log x \right)}dx\]
\[Putting \log\left( \log x \right) = t\]
\[ \Rightarrow \frac{1}{x\log x} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{1}{x \log x}dx = dt\]
\[ \therefore I = \int\frac{dt}{t}\]
\[ = \log\left| t \right| + C\]
\[ = \log\left| \text{log}\left( \ logx \right) \right| + C \left[ \because t = \text{log}\left( \text{log x} \right) \right]\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]
\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]
Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]
\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]
`∫ cos ^4 2x dx `
\[\int\frac{a}{b + c e^x} dx\]
\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]
\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1} \text{dx}\]
\[\int\frac{\cos^5 x}{\sin x} dx\]
\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
` ∫ tan^3 x sec^2 x dx `
\[\int \sin^5 x \text{ dx }\]
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
\[\int\frac{1}{2 x^2 - x - 1} dx\]
\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]
\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]
\[\int x e^{2x} \text{ dx }\]
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int e^x \left( \tan x - \log \cos x \right) dx\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]
\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[\int \tan^4 x\ dx\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]
\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`