Advertisements
Advertisements
प्रश्न
उत्तर
` Note : "Here, we are considering " log x as log_e x `
\[\text{Let I} = \int\frac{cosec x}{\log \tan\frac{x}{2}}dx\]
\[Putting\ \log \tan \frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2}\frac{\sec^2 \frac{x}{2}}{\tan\frac{x}{2}} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{1}{2 \sin\frac{x}{2} . \cos\frac{x}{2}} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{1}{\sin x} = \frac{dt}{dx}\]
\[ \Rightarrow \text{cosec x dx} = dt\]
\[ \therefore I = \int\frac{dt}{t}\]
\[ = \text{log}\left| t \right| + C\]
\[ = \text{log }\left| \log \tan\frac{x}{2} \right| + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]