हिंदी

∫ 18 ( X + 2 ) ( X 2 + 4 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]
योग

उत्तर

We have,

\[I = \int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)}dx\]

\[\text{Let }\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} = \frac{A}{x + 2} + \frac{Bx + C}{x^2 + 4}\]

\[ \Rightarrow \frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} = \frac{A \left( x^2 + 4 \right) + \left( Bx + C \right) \left( x + 2 \right)}{\left( x + 2 \right) \left( x^2 + 4 \right)}\]

\[ \Rightarrow 18 = A x^2 + 4A + B x^2 + 2Bx + Cx + 2C\]

\[ \Rightarrow 18 = \left( A + B \right) x^2 + x \left( 2B + C \right) + 4A + 2C\]

\[\text{Equating coefficients of like terms}\]

\[A + B = 0 . . . . . \left( 1 \right)\]

\[2B + C = 0 . . . . . \left( 2 \right)\]

\[4A + 2C = 18 . . . . . \left( 3 \right)\]

\[\text{Solving (1), (2) and (3), we get}\]

\[A = \frac{9}{4}\]

\[B = - \frac{9}{4}\]

\[C = \frac{9}{2}\]

\[ \therefore \frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} = \frac{9}{4 \left( x + 2 \right)} + \frac{- \frac{9}{4}x + \frac{9}{2}}{x^2 + 4}\]

\[ \Rightarrow \frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} = \frac{9}{4 \left( x + 2 \right)} - \frac{9}{4} \left( \frac{x}{x^2 + 4} \right) + \frac{9}{2 \left( x^2 + 4 \right)}\]

\[ \Rightarrow \int\frac{18 dx}{\left( x + 2 \right) \left( x^2 + 4 \right)} = \frac{9}{4}\int\frac{dx}{x + 2} - \frac{9}{4}\int\frac{x dx}{x^2 + 4} + \frac{9}{2}\int\frac{dx}{x^2 + 2^2}\]

\[\text{Let }x^2 + 4 = t\]

\[ \Rightarrow 2xdx = dt\]

\[ \Rightarrow x dx = \frac{dt}{2}\]

\[ \therefore I = \frac{9}{4}\int\frac{dx}{x + 2} - \frac{9}{8}\int\frac{dt}{t} + \frac{9}{2}\int\frac{dx}{x^2 + 2^2}\]

\[ = \frac{9}{4} \log \left| x + 2 \right| - \frac{9}{8} \log \left| t \right| + \frac{9}{2} \times \frac{1}{2} \tan^{- 1} \left( \frac{x}{2} \right) + C'\]

\[ = \frac{9}{4} \log \left| x + 2 \right| - \frac{9}{8} \log \left| x^2 + 4 \right| + \frac{9}{4} \tan^{- 1} \left( \frac{x}{2} \right) + C'\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 35 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int \sec^4 2x \text{ dx }\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int x \cos x\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int \sin^4 2x\ dx\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×