हिंदी

∫ X 2 + 6 X − 8 X 3 − 4 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]
योग

उत्तर

We have,

\[I = \int\left( \frac{x^2 + 6x - 8}{x^3 - 4x} \right)dx\]

\[ = \int\frac{\left( x^2 + 6x - 8 \right)}{x \left( x^2 - 4 \right)}dx\]

\[ = \int\frac{\left( x^2 + 6x - 8 \right)}{x \left( x - 2 \right) \left( x + 2 \right)}dx\]

\[Let \frac{x^2 + 6x - 8}{x \left( x - 2 \right) \left( x + 2 \right)} = \frac{A}{x} + \frac{B}{x - 2} + \frac{C}{x + 2}\]

\[ \Rightarrow \frac{x^2 + 6x - 8}{x \left( x - 2 \right) \left( x + 2 \right)} = \frac{A \left( x - 2 \right) \left( x + 2 \right) + B \left( x \right) \left( x + 2 \right) + C \left( x \right) \left( x - 2 \right)}{x \left( x - 2 \right) \left( x + 2 \right)}\]

\[ \Rightarrow x^2 + 6x - 8 = A \left( x^2 - 4 \right) + B \left( x^2 + 2x \right) + C \left( x^2 - 2x \right)\]

Putting `x - 2 = 0`

\[ \Rightarrow x = 2\]

\[4 + 6 \times 2 - 8 = A \times 0 + B \left( 4 + 4 \right)\]

\[ \Rightarrow 8 = B \times 8\]

\[ \Rightarrow B = 1\]

Putting `x = - 2`

\[4 - 12 - 8 = A \times 0 + B \times 0 + C \times 8\]
\[ \Rightarrow C = - 2\]

Putting `x = 0`

\[ - 8 = A \left( - 4 \right) + B \times 0 + C \times 0\]

\[ \Rightarrow A = 2\]

\[ \therefore I = \int\frac{2}{x} + \int\frac{dx}{x - 2} - 2\int\frac{dx}{x + 2}\]

\[ = 2 \log \left| x \right| + \log \left| x - 2 \right| - 2 \log \left| x + 2 \right| + C\]

\[ = \log x^2 + \log \left| x - 2 \right| - \log \left| x + 2 \right|^2 + C\]

\[ = \log \left| \frac{x^2 \left( x - 2 \right)}{\left( x + 2 \right)^2} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 20 | पृष्ठ १७६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

` ∫      tan^5    x   dx `


\[\int \cos^5 x \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×