हिंदी

∫ √ Sin X Cos 3 X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]
योग

उत्तर

\[ \text{ Let  I} = \int\sqrt{\sin x} \cdot \cos^3 \text{ x  dx }\]
\[ = \int\sqrt{\sin x} \cdot \left( \cos^2 x \right) \cdot \text{ cos  x  dx }\]
\[ = \int\sqrt{\sin x} \left( 1 - \sin^2 x \right) \cdot \text{ cos  x  dx}\]
\[\text{ Putting  sin x} = t\]
\[ \Rightarrow \text{ cos x  dx }= dt\]
\[ \therefore I = \int\sqrt{t} \left( 1 - t^2 \right) \cdot dt\]
\[ = \int t^\frac{1}{2} dt - \int t^\frac{1}{2} \cdot t^2 dt\]
\[ = \int t^\frac{1}{2} dt - \int t^\frac{5}{2} dt\]
\[ = \frac{t^\frac{3}{2}}{\frac{3}{2}} - \frac{t^\frac{7}{2}}{\frac{7}{2}} + C\]
\[ = \frac{2}{3} t^\frac{3}{2} - \frac{2}{7} t^\frac{7}{2} + C\]
\[ = \frac{2}{3} \text{ sin }^\frac{3}{2} \text{ x }- \frac{2}{7} \text{ sin }^\frac{7}{2} \text{ x }+ C ..........\left[ \because t = \text{ sin x }\right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 40 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int x \cos x\ dx\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×