Advertisements
Advertisements
प्रश्न
उत्तर
\[\int x^2 \text{ cos 2x dx }\]
` " Taking x"^2 " as the first function and cos 2x as the second function" .`
\[ = x^2 \int\text{ cos 2x dx } - \int\left( 2x\int\text{ cos 2x dx }\right)dx\]
\[ = \frac{x^2 \sin 2x}{2} - \int\frac{2x \sin 2x}{2}dx\]
\[ = \frac{x^2}{2}\sin 2x - \int x \text{ sin 2x dx }\]
\[ = \frac{x^2}{2}\sin 2x - \left[ x\int\sin2x - \int\left( \int\text{ sin 2x dx }\right)dx \right]\]
\[ = \frac{x^2}{2}\sin 2x - \left[ \frac{- x \cos 2x}{2} + \int\frac{\cos 2x}{2}dx \right]\]
\[ = \frac{x^2}{2}\sin 2x + \frac{x \cos 2x}{2} - \frac{\sin 2x}{4} + C\]
APPEARS IN
संबंधित प्रश्न
` ∫ 1/ {1+ cos 3x} ` dx
`∫ cos ^4 2x dx `
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
Find: `int (3x +5)/(x^2+3x-18)dx.`