हिंदी

∫ E X E 2 X + 5 E X + 6 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]
योग

उत्तर

\[\int\frac{e^x dx}{e^{2x} + 5 e^x + 6}\]
\[\text{ let } e^x = t\]
\[ \Rightarrow e^x \text{ dx }= dt\]
\[Now, \int\frac{e^x dx}{e^{2x} + 5 e^x + 6}\]
\[ = \int\frac{dt}{t^2 + 5t + 6}\]
\[ = \int\frac{dt}{t^2 + 5t + \left( \frac{5}{2} \right)^2 - \left( \frac{5}{2} \right)^2 + 6}\]
\[ = \int\frac{dt}{\left( t + \frac{5}{2} \right)^2 - \frac{25}{4} + 6}\]
\[ = \int\frac{dt}{\left( t + \frac{5}{2} \right)^2 - \frac{25 + 24}{4}}\]
\[ = \int\frac{dt}{\left( t + \frac{5}{2} \right)^2 - \left( \frac{1}{2} \right)^2}\]
\[ = \frac{1}{2 \times \frac{1}{2}} \log \left| \frac{t + \frac{5}{2} - \frac{1}{2}}{t + \frac{5}{2} + \frac{1}{2}} \right| + C\]
\[ = \text{ log }\left| \frac{t + 2}{t + 3} \right| + C\]
\[ = \text{ log}  \left| \frac{e^x + 2}{e^x + 3} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.16 [पृष्ठ ९०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.16 | Q 4 | पृष्ठ ९०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int \sin^5 x \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int \tan^5 x\ dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×