Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
योग
उत्तर
\[\text{ Let I }= \int\frac{dx}{p + q \tan x}\]
\[ = \int\frac{1}{p + \frac{q \sin x}{\cos x}}dx\]
\[ = \int\frac{\cos x}{q \sin x + p \cos x}dx\]
\[\text{ Let cos x} = A \left(\text{ q sin x + p cos x} \right) + B \left( q \cos x - p \sin x \right)\]
\[ \Rightarrow \cos x = \left( Ap + Bq \right) \cos x + \left( Aq - Bp \right) \sin x\]
Comparing coefficients of like terms
\[Ap + Bq = 1 . . . \left( 1 \right)\]
\[Aq - Bp = 0 . . . \left( 2 \right)\]
\[\Rightarrow A p^2 + Bpq = p\]
\[ \Rightarrow A q^2 - Bpq = 0\]
\[ \Rightarrow A = \frac{p}{p^2 q^2}\]
Putting value of A in eq (1)
\[\frac{p^2}{p^2 + q^2} + Bq = 1\]
\[ \Rightarrow Bq = 1 - \frac{p^2}{p^2 + q^2}\]
\[ \Rightarrow Bq = \frac{p^2 + q^2 - p^2}{p^2 + q^2}\]
\[ \Rightarrow B = \frac{q}{p^2 + q^2}\]
\[ \therefore I = \int\left[ \frac{p}{p^2 + q^2} \times \frac{\left( q \sin x + p \cos x \right)}{\left( q \sin x + p \cos x \right)} + \frac{q}{p^2 + q^2} \times \frac{\left( q \cos x - p \sin x \right)}{\left( q \sin x + p \cos x \right)} \right]dx\]
\[ = \frac{p}{p^2 + q^2}\int dx + \frac{q}{p^2 + q^2}\int\left( \frac{q \cos x - p \sin x}{q \sin x + p \cos x} \right)dx\]
\[\text{ Putting q sin x + p cos x = t}\]
\[ \Rightarrow \left( q \cos x - p \sin x \right) dx = dt\]
\[ \therefore I = \frac{p}{p^2 + q^2}\int\ dx + \frac{q}{p^2 + q^2}\int\frac{1}{t}dt\]
\[ = \frac{p}{p^2 + q^2} x + \frac{q}{p^2 + q^2} \text{ ln } \left| q \sin x + p \cos x \right| + C\]
\[ \Rightarrow Bq = 1 - \frac{p^2}{p^2 + q^2}\]
\[ \Rightarrow Bq = \frac{p^2 + q^2 - p^2}{p^2 + q^2}\]
\[ \Rightarrow B = \frac{q}{p^2 + q^2}\]
\[ \therefore I = \int\left[ \frac{p}{p^2 + q^2} \times \frac{\left( q \sin x + p \cos x \right)}{\left( q \sin x + p \cos x \right)} + \frac{q}{p^2 + q^2} \times \frac{\left( q \cos x - p \sin x \right)}{\left( q \sin x + p \cos x \right)} \right]dx\]
\[ = \frac{p}{p^2 + q^2}\int dx + \frac{q}{p^2 + q^2}\int\left( \frac{q \cos x - p \sin x}{q \sin x + p \cos x} \right)dx\]
\[\text{ Putting q sin x + p cos x = t}\]
\[ \Rightarrow \left( q \cos x - p \sin x \right) dx = dt\]
\[ \therefore I = \frac{p}{p^2 + q^2}\int\ dx + \frac{q}{p^2 + q^2}\int\frac{1}{t}dt\]
\[ = \frac{p}{p^2 + q^2} x + \frac{q}{p^2 + q^2} \text{ ln } \left| q \sin x + p \cos x \right| + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]
\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]
\[\int\frac{\cos x}{1 + \cos x} dx\]
\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]
\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
` ∫ sin 4x cos 7x dx `
\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]
\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\]
\[\int\frac{1}{x (3 + \log x)} dx\]
` ∫ tan 2x tan 3x tan 5x dx `
Evaluate the following integrals:
\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]
\[\int\frac{dx}{e^x + e^{- x}}\]
\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]
\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]
\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]
\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]
\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]
\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]
\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]
\[\int x^2 \cos 2x\ \text{ dx }\]
\[\int\frac{\log x}{x^n}\text{ dx }\]
\[\int x \sin x \cos 2x\ dx\]
\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]
\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]
\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]
\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int \tan^3 x\ dx\]
\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]
\[\int\frac{1}{a + b \tan x} \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int x^3 \left( \log x \right)^2\text{ dx }\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]