हिंदी

∫ X Sin X Cos 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x \sin x \cos 2x\ dx\]
योग

उत्तर

\[\int x . \cos 2x \text{ sin x dx }\]
\[ = \frac{1}{2} \int x \left( 2 \cos 2x \sin x \right) dx \left[ \because 2 \cos A \sin B = \sin \left( A + B \right) - \sin \left( A - B \right) \right]\]
\[ = \frac{1}{2} \int x \left( \sin 3x - \sin x \right) dx\]
\[ = \frac{1}{2} \int x . \text{ sin 3x dx }- \frac{1}{2} \int x \text{ sin x dx}\]
\[ = \frac{1}{2}\left[ x\int\text{ sin 3x dx }- \int\left\{ \frac{d}{dx}\left( x \right)\int\text{ sin 3x dx} \right\}dx \right] - \frac{1}{2}\left[ x\int\text{ sin x dx }- \int\left\{ \frac{d}{dx}\left( x \right)\int\text{ sin x dx }\right\}dx \right]\]
\[ = \frac{1}{2}\left[ x . \left( \frac{- \cos 3x}{3} \right) - \int 1 . \left( \frac{- \cos 3x}{3} \right)dx \right] - \frac{1}{2}\left[ x . \left( - \text{ cos x} \right) - \int 1 . \left( - \cos x \right) dx \right]\]
\[ = \frac{1}{2}\left[ x . \left( \frac{- \cos 3x}{3} \right) + \frac{1}{9}\sin 3x \right] - \frac{1}{2}\left[ x . \left( - \cos x \right) + \sin x \right]\]
\[ = - \frac{x \cos 3x}{6} + \frac{\sin 3x}{18} + \frac{x \cos x}{2} - \frac{\sin x}{2} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 50 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

`∫     cos ^4  2x   dx `


\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×