हिंदी

∫ X + 1 √ 2 X + 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]
योग

उत्तर

\[\int\left( \frac{x + 1}{\sqrt{2x + 3}} \right)dx\]
\[ = \frac{1}{2}\int\left( \frac{2x + 2}{\sqrt{2x + 3}} \right)dx\]
\[ = \frac{1}{2}\int\left( \frac{2x + 3 - 1}{\sqrt{2x + 3}} \right)dx\]
\[ = \frac{1}{2}\int\left( \frac{2x + 3}{\sqrt{2x + 3}} - \frac{1}{\sqrt{2x + 3}} \right)dx\]
\[ = \frac{1}{2}\int\left( \sqrt{2x + 3} - \frac{1}{\sqrt{2x + 3}} \right)dx\]
\[ = \frac{1}{2}\left[ \int \left( 2x + 3 \right)^\frac{1}{2} dx - \int \left( 2x + 3 \right)^{- \frac{1}{2}} dx \right]\]
\[ = \frac{1}{2}\left[ \frac{\left( 2x + 3 \right)^\frac{1}{2} + 1}{2\left( \frac{1}{2} + 1 \right)} - \frac{\left( 2x + 3 \right)^{- \frac{1}{2} + 1}}{2\left( - \frac{1}{2} + 1 \right)} + C \right]\]
\[ = \frac{1}{2}\left[ \frac{1}{3} \left( 2x + 3 \right)^\frac{3}{2} - \left( 2x + 3 \right)^\frac{1}{2} + C \right]\]
\[ = \frac{1}{6} \left( 2x + 3 \right)^\frac{3}{2} - \frac{1}{2} \left( 2x + 3 \right)^\frac{1}{2} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.05 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.05 | Q 1 | पृष्ठ ३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int {cosec}^3 x\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×