हिंदी

∫ C O S E C 3 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int {cosec}^3 x\ dx\]
योग

उत्तर

\[\text{ Let I} = \int {cosec}^3 x  \text{ dx }\]
\[ = \int {cosec}^2 x \cdot \text{ cosec x dx }\]
\[ = \int {cosec}^2 x \cdot \sqrt{1 + \cot^2 x}  \text{ dx }\]
\[\text{ Let} \cot x = t\]
\[ \Rightarrow - {cosec}^2 x  \text{  dx } = dt\]
\[ \therefore I = - \int\sqrt{1 + t^2}dt\]
\[ = - \frac{t}{2}\sqrt{1 + t^2} - \frac{1^2}{2} \text{ log} \left| t + \sqrt{1 + t^2} \right| + C . . . (1)\]
\[\text{Substituting the value of t in eq}   \text{ (1) }\]
\[ = - \frac{\cot x}{2} \cdot \text{ cosec x }- \frac{1}{2} \text{ log }\left| \text{ cot x + cosec x }\right| + C\]
\[ = - \frac{1}{2}\text{ cosec x cot x} - \frac{1}{2} \text{ log } \left| \frac{\cos x}{\sin x} + \frac{1}{\sin x} \right| + C\]
\[ = - \frac{1}{2} \text{ cosec x  cot x }- \frac{1}{2} \text{ log } \left| \frac{2 \cos^2 \frac{x}{2}}{2 \sin \frac{x}{2} \cos \frac{x}{2}} \right| + C\]
\[ = - \frac{1}{2} \text{ cosec x  cot x }- \frac{1}{2} \text{ log }\left| \cot \frac{x}{2} \right| + C\]
\[ = - \frac{1}{2} \text{ cosec x  cot x} + \frac{1}{2} \text{ log }\left| \tan \frac{x}{2} \right| + C \left( \because \text{ log }\left| \cot \frac{x}{2} \right| = \text{ log }\left| \frac{1}{\tan \frac{x}{2}} \right| \Rightarrow - \text{ log }\left| \tan \frac{x}{2} \right| \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 29 | पृष्ठ १३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int \sin^3 x \cos^5 x \text{ dx  }\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×