हिंदी

∫ 1 1 + Cos 3 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

` ∫  1/ {1+ cos   3x}  ` dx

योग

उत्तर

` ∫  1/ {1+ cos   3x}  ` dx

\[ = \int\frac{\left( 1 - \cos 3x \right)}{\left( 1 + \text{cos  3x} \right) \left( 1 - \cos 3x \right)}dx\]

\[ = \int\left( \frac{1 - \cos 3x}{1 - \cos^2 3x} \right) dx\]

\[ = \int\left( \frac{1 - \cos 3x}{\sin^2 3x} \right) dx\]

\[ = \int \text{cosec}^\text{2}\text{ 3x dx} -  ∫cosec\ 3x \cot 3xdx\]

` = - {cot 3x} / 3 + {"cosec "  3x} / 3 + c `

` = 1/3 [ "cosec"   3x - cot 3x ] + c ` 

\[ = \frac{1}{3}\left[ \frac{1}{\sin 3x} - \frac{\cos 3x}{\sin 3x} \right] + C\]

\[ = \frac{1}{3} \left[ \frac{1 - \cos 3x}{\sin 3x} \right] + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.03 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.03 | Q 13 | पृष्ठ २३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

`∫     cos ^4  2x   dx `


` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int \tan^5 x\ dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×