Advertisements
Advertisements
प्रश्न
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
योग
उत्तर
\[\int\left( \frac{e^{m \tan^{- 1} x}}{1 + x^2} \right)dx\]
\[\text{Let} \tan^{- 1} x = t\]
\[ \Rightarrow \left( \frac{1}{1 + x^2} \right)dx = dt\]
\[Now, \int\left( \frac{e^{m \tan^{- 1} x}}{1 + x^2} \right)dx\]
\[ = \int e^{mt} dt\]
\[ = \frac{e^{mt}}{m} + C\]
\[ = \frac{e^{m \tan^{- 1} x}}{m} + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
Integrate the following integrals:
\[\int\text{sin 2x sin 4x sin 6x dx} \]
\[\int x^3 \sin x^4 dx\]
\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]
\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]
\[\int x^2 \sqrt{x + 2} \text{ dx }\]
\[\int {cosec}^4 \text{ 3x } \text{ dx } \]
\[\int \sin^3 x \cos^5 x \text{ dx }\]
\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]
\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]
\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]
\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]
\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{ dx}\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
\[\int\frac{\log x}{x^n}\text{ dx }\]
\[\int {cosec}^3 x\ dx\]
\[\int \cos^3 \sqrt{x}\ dx\]
\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{x^2 + 1}{x^2 - 1} dx\]
\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]
\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]
\[\int\frac{1}{1 - x - 4 x^2}\text{ dx }\]
\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int\frac{1}{\sec x + cosec x}\text{ dx }\]
\[\int\sqrt{1 + 2x - 3 x^2}\text{ dx } \]
\[\int\frac{x}{x^3 - 1} \text{ dx}\]
\[\int\frac{\cos^7 x}{\sin x} dx\]