हिंदी

∫ 1 1 + 3 Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
योग

उत्तर

\[\text{ Let I }= \int \frac{1}{1 + 3 \sin^2 x}\text{ dx }\]
\[\text{Dividing numerator and denominator by} \cos^2 x\]
\[ \Rightarrow I = \int \frac{\sec^2 x}{\sec^2 x + 3 \tan^2 x}dx\]


\[ = \int \frac{\sec^2 x}{1 + \tan^2 x + 3 \tan^2 x}dx\]
\[ = \int \frac{\sec^2 x}{1 + 4 \tan^2 x}dx\]
\[ = \int \frac{\sec^2 x}{1 + \left( 2 \tan x \right)^2}dx\]
\[\text{ Let 2 }\tan x = t\]
\[ \Rightarrow 2 \sec^2 x \text{ dx } = dt\]
\[ \Rightarrow \sec^2 x \text{ dx } = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int \frac{dt}{1 + t^2}\]
\[ = \frac{1}{2} \text{ tan  }^{- 1} \left( t \right) + C\]
\[ = \frac{1}{2} \text{ tan }^{- 1} \left( 2 \tan x \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.22 [पृष्ठ ११४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.22 | Q 5 | पृष्ठ ११४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

` ∫      tan^5    x   dx `


\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int x e^{2x} \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×