हिंदी

∫ √ a 2 + X 2 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{a^2 + x^2} \text{ dx }\]
योग

उत्तर

\[\text{ Let  I }= \int {1_{II}  \cdot}\sqrt{a^2 {_I} + x^2} dx\]
\[ = \sqrt{a^2 + x^2} \int1 \text{ dx }- \int\left( \frac{d}{dx}\left( \sqrt{a^2 + x^2} \right) \int1 \text{ dx }\right)\text{ dx }\]
\[ = \sqrt{a^2 + x^2} \cdot x - \int\frac{1 \times 2x}{2 \sqrt{a^2 + x^2}} \cdot x \text{ dx }\]
\[ = \sqrt{a^2 + x^2} \cdot x - \int\left( \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} \right)\text{ dx }\]
\[ = x\sqrt{a^2 + x^2} - \int\sqrt{a^2 + x^2} dx + a^2 \int\frac{1}{\sqrt{a^2 + x^2}}\text{ dx }\]
\[ = x\sqrt{a^2 + x^2} - I + a^2 \int\frac{1}{\sqrt{a^2 + x^2}}dx\]
\[ \therefore 2I = x\sqrt{a^2 + x^2} + a^2 \text{ ln} \left| x + \sqrt{x^2 + a^2} \right|\]
\[ \Rightarrow I = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \text{ ln} \left| x + \sqrt{x^2 + a^2} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 84 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

`∫     cos ^4  2x   dx `


\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×