हिंदी

∫ √ x 2 − a 2 dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{x^2 - a^2} \text{ dx}\]
योग

उत्तर

\[\text{ Let  I } = \int {1_{II} \cdot} \sqrt{x^2 {  _I} - a ^2} \text{ dx }\]
\[ = \sqrt{x^2 - a^2}\int1 \text{ dx} - \int\left( \frac{d}{dx}\left( \sqrt{x^2 - a^2} \right)\int1 \text{ dx}\right)dx\]
\[ = \sqrt{x^2 - a^2} \cdot x - \int\frac{1 \times 2x}{2 \sqrt{x^2 - a^2}} \cdot x\text{ dx}\]
\[ = \sqrt{x^2 - a^2} \cdot x - \int\left( \frac{x^2 - a^2 + a^2}{\sqrt{x^2 - a^2}} \right)dx\]
\[ = \sqrt{x^2 - a^2} \cdot x - \int\sqrt{x^2 - a^2} dx - a^2 \int\frac{dx}{\sqrt{x^2 - a^2}}\]
\[ = x\sqrt{x^2 - a^2} - I - a^2 \int\frac{dx}{\sqrt{x^2 - a^2}}\]
\[ \therefore 2I = x\sqrt{x^2 - a^2} - a^2 \text{ ln } \left| x + \sqrt{x^2 - a^2} \right|\]
\[ \Rightarrow I = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \text{ ln
}\left| x + \sqrt{x^2 - a^2} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 85 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

`  ∫  sin 4x cos  7x  dx  `

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int x^3 \cos x^4 dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int \cot^6 x \text{ dx }\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int x \text{ sin 2x dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int x \sin x \cos 2x\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×