Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int {1_{II} \cdot} \sqrt{x^2 { _I} - a ^2} \text{ dx }\]
\[ = \sqrt{x^2 - a^2}\int1 \text{ dx} - \int\left( \frac{d}{dx}\left( \sqrt{x^2 - a^2} \right)\int1 \text{ dx}\right)dx\]
\[ = \sqrt{x^2 - a^2} \cdot x - \int\frac{1 \times 2x}{2 \sqrt{x^2 - a^2}} \cdot x\text{ dx}\]
\[ = \sqrt{x^2 - a^2} \cdot x - \int\left( \frac{x^2 - a^2 + a^2}{\sqrt{x^2 - a^2}} \right)dx\]
\[ = \sqrt{x^2 - a^2} \cdot x - \int\sqrt{x^2 - a^2} dx - a^2 \int\frac{dx}{\sqrt{x^2 - a^2}}\]
\[ = x\sqrt{x^2 - a^2} - I - a^2 \int\frac{dx}{\sqrt{x^2 - a^2}}\]
\[ \therefore 2I = x\sqrt{x^2 - a^2} - a^2 \text{ ln } \left| x + \sqrt{x^2 - a^2} \right|\]
\[ \Rightarrow I = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \text{ ln
}\left| x + \sqrt{x^2 - a^2} \right| + C\]
APPEARS IN
संबंधित प्रश्न
Integrate the following integrals:
Evaluate the following integrals:
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]