हिंदी

∫ Log X X 3 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\log x}{x^3} \text{ dx }\]
योग

उत्तर

\[\int\frac{\log x}{x^3}dx\]
\[ = \int \frac{1}{x^3}_{II}\ \log x_I\ dx\]
\[ = \log x\int\frac{1}{x^3}dx - \int\left\{ \frac{d}{dx}\left( \log x \right)\int\frac{1}{x^3}dx \right\}dx\]
\[ = \log x\int x^{- 3} dx - \int\frac{1}{x} \times \left( \frac{x^{- 3 + 1}}{- 3 + 1} \right)dx\]
\[ = \log x \left[ \frac{x^{- 3 + 1}}{- 3 + 1} \right] + \frac{1}{2}\int\frac{1}{x^3}dx\]
\[ = \log x \left( - \frac{1}{2 x^2} \right) + \frac{1}{2}\int x^{- 3} dx\]
\[ = \log x \left( - \frac{1}{2 x^2} \right) + \frac{1}{2} \left[ \frac{x^{- 3 + 1}}{- 3 + 1} \right] + C\]
\[ = \log x \left( - \frac{1}{2 x^2} \right) - \frac{1}{4 x^2} + C\]
\[ = - \frac{1}{4 x^2} \left( 2 \log x + 1 \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 98 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{a}{b + c e^x} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

` ∫  sec^6   x  tan    x   dx `

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int x e^{2x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int \sin^5 x\ dx\]

\[\int x \sec^2 2x\ dx\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×