हिंदी

∫ ( 5 X + 3 ) √ 2 X − 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]
योग

उत्तर

\[\text{Let I} = \int\left( 5x + 3 \right) \sqrt{2x - 1}dx\]
\[Putting\ 2x - 1 = t\]
\[ \Rightarrow 2x = t + 1\]
\[ \Rightarrow x = \frac{t + 1}{2}\]

\[\text{and}\ 2dx = dt\]
\[ \Rightarrow dx = \frac{dt}{2}\]

\[\therefore I = \int\left[ 5\left( \frac{t + 1}{2} \right) + 3 \right] \cdot \sqrt{t} \cdot \frac{dt}{2}\]

` = ∫ ( 5t / 2 + 5/2 + 3 ) ×( \sqrt t   dt) /2 `
\[ = \frac{1}{4}\int\left( 5t + 11 \right) t^\frac{1}{2} dt\]
\[ = \frac{1}{4}\int\left( 5 t^\frac{3}{2} + 11 t^\frac{1}{2} \right) dt\]
\[ = \frac{1}{4}\left[ 5\frac{t^\frac{3}{2} + 1}{\frac{3}{2} + 1} + 11\frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + C\]


\[ = \frac{1}{4} \times \frac{2}{5} \times  \text{5 } t^\frac{5}{2} + \frac{1}{4} \times 11 \times \frac{2}{3}\text{ t}^\frac{3}{2} + C\]
\[ = \frac{1}{2} t^\frac{5}{2} + \frac{11}{6} t^\frac{3}{2} + C\]


\[ = \frac{t^\frac{3}{2}}{2}\left[ t + \frac{11}{3} \right] + C\]


\[ = \frac{t^\frac{3}{2}}{2}\left[ \frac{3t + 11}{3} \right] + C\]


\[ = \frac{\left( 2x - 1 \right)^\frac{3}{2}}{2}\left[ \frac{3\left( 2x - 1 \right) + 11}{3} \right] + C \left[ \because t = 2x - 1 \right]\]


\[ = \frac{\left( 2x - 1 \right)^\frac{3}{2}}{2}\left[ \frac{6x - 3 + 11}{3} \right] + C\]


\[ = \left( \frac{2x - 1}{2} \right)^\frac{3}{2} \left[ \frac{2 \left( 3x + 4 \right)}{3} \right] + C\]


\[ = \frac{\left( 2x - 1 \right)^\frac{3}{2} \left( 3x + 4 \right)}{3} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.05 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.05 | Q 9 | पृष्ठ ३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

`∫     cos ^4  2x   dx `


\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×