हिंदी

∫ X 2 √ 1 − X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
योग

उत्तर

Let I = `int x^2/[ sqrt( x - 1) ] `dx
Substituting x - 1 = t and dx = dt, we get,

I = `int  ( t + 1)^2/sqrt t`dx

= `int ( t^2 + 1 +2t )/ sqrtt` dt

= `int ( t^(3/2) + t^(-1/2) + 2t^(-1/2) )`dt

= `2/5t^(5/2) + 2t^(1/2) + 4/3t^(3/2)` + c

= `[ 6t^(5/2) + 30t^(1/2) + 20t^(3/2)]/15`+ c

= `2/15  t^(1/2)( 3t^2 + 15 + 10t )` + c

= `2/15 sqrt( x - 1 )[ 3( x -1 )^2 + 15 + 10( x - 1)]`+ c

= `2/15 sqrt( x - 1 )[ 3( x^2  + 1 - 2x ) + 15 + 10x - 10]`+ c

= `2/15 sqrt( x - 1 )[  3x^2  + 3 - 6x + 15 + 10x - 10]`+ c

= `2/15 sqrt( x - 1 ) [  3x^2 + 4x + 8 ]`+ c

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.10 [पृष्ठ ६५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.10 | Q 7 | पृष्ठ ६५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int \cot^5 x  \text{ dx }\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×