Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\left( \frac{x^4 + 1}{x^2 + 1} \right)dx\]
\[ = \int\left( \frac{x^4 - 1 + 1 + 1}{x^2 + 1} \right)dx\]
\[ = \int\left[ \frac{\left( x^4 - 1 \right)}{x^2 + 1} + \frac{2}{x^2 + 1} \right]dx\]
\[ = \int\left[ \frac{\left( x^2 - 1 \right)\left( x^2 + 1 \right)}{\left( x^2 + 1 \right)} + \frac{2}{x^2 + 1} \right]dx\]
\[ = \int\left[ \left( x^2 - 1 \right) + \frac{2}{x^2 + 1} \right]dx\]
\[ = \frac{x^3}{3} - x + 2 \tan^{- 1} \left( x \right) + C\]
APPEARS IN
संबंधित प्रश्न
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
` ∫ sin x \sqrt (1-cos 2x) dx `
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]