हिंदी

∫ X 4 + 1 X 2 + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
योग

उत्तर

\[\int\left( \frac{x^4 + 1}{x^2 + 1} \right)dx\]
\[ = \int\left( \frac{x^4 - 1 + 1 + 1}{x^2 + 1} \right)dx\]
\[ = \int\left[ \frac{\left( x^4 - 1 \right)}{x^2 + 1} + \frac{2}{x^2 + 1} \right]dx\]
\[ = \int\left[ \frac{\left( x^2 - 1 \right)\left( x^2 + 1 \right)}{\left( x^2 + 1 \right)} + \frac{2}{x^2 + 1} \right]dx\]
\[ = \int\left[ \left( x^2 - 1 \right) + \frac{2}{x^2 + 1} \right]dx\]
\[ = \frac{x^3}{3} - x + 2 \tan^{- 1} \left( x \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.14 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.14 | Q 10 | पृष्ठ ८३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


` ∫   cos  3x   cos  4x` dx  

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int \log_{10} x\ dx\]

\[\int x \sin x \cos 2x\ dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int \tan^5 x\ dx\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×