हिंदी

If F' (X) = X + B, F(1) = 5, F(2) = 13, Find F(X) - Mathematics

Advertisements
Advertisements

प्रश्न

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)

योग

उत्तर

\[f'\left( x \right) = x + b, f\left( 1 \right) = 5, f\left( 2 \right) = 13\]
\[ f'\left( x \right) = x + b\]
\[\int{f}'\left( x \right)dx = \int\left( x + b \right)dx\]
\[f\left( x \right) = \frac{x^2}{2} + bx + C . . . . (i)\]
\[f\left( 1 \right) = 5, f\left( 2 \right) = 13 \left( Given \right)\]
\[\text{Puting x} = \text{1  in (i)}\]
\[f\left( 1 \right) = \frac{1^2}{2} + b1 + C\]
\[5 = \frac{1}{2} + b + C . . . \left( ii \right)\]
\[\text{Puting x }= \text{2 in (i)}\]
\[f\left( 2 \right) = \frac{2^2}{2} + b2 + C\]
\[13 = \frac{4}{2} + 2b + C\]
\[13 = 2 + 2b + C . . . (iii)\]
\[\text{Solving (ii) and (iii) we get}, \]
\[b = \frac{13}{2} \text{and C }= - 2\]
\[Thus, f\left( x \right) = \frac{x^2}{2} + \frac{13}{2}x - 2\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.02 | Q 46 | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( 3x + 4 \right)^2 dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

` ∫  tan^5 x   sec ^4 x   dx `

` ∫      tan^5    x   dx `


\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x \cos x\ dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int \cos^3 (3x)\ dx\]

\[\int \cot^5 x\ dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×