हिंदी

∫ Cot 5 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \cot^5 x\ dx\]
योग

उत्तर

\[\text{ Let  I } = \int \cot^5 \text{ x  dx }\]
\[ = \int \cot^2 x \cdot \cot^3\text{ x  dx }\]
\[ = \int\left(\text{cosec}^2 x - 1 \right) \cot^3 \text{ x  dx }\]
\[ = \int \cot^3 x \cdot \text{cosec}^2\text{ x  dx } - \int \cot^3 \text{ x  dx }\]
\[ = \int \cot^3 x \cdot \text{cosec}^2 \text{ x  dx }- \int\cot x \cdot \cot^2 \text{ x  dx }\]
\[ = \int \cot^3 x \cdot \text{cosec}^2\text{ x  dx }- \int\cot x \left( {cosec}^2 x - 1 \right)\text{   dx }\]
\[ = \int \cot^3 x \cdot \text{cosec}^2 \text{ x  dx } - \int\cot x \cdot \text{ cosec}^2\text{ x  dx }+ \int\cot\text{ x  dx }\]
\[\text{   Putting cot  x  = t   in  the  Ist  and  IInd  integral}\]
\[ \Rightarrow - \text{cosec}^2\text{ x  dx }= dt\]
\[ \Rightarrow \text{cosec}^2 \text{ x  dx }= - dt\]
\[ \therefore I = - \int t^3 dt + \int t \cdot dt + \int\cot\text{ x  dx }\]
\[ = - \frac{t^4}{4} + \frac{t^2}{2} + \text{ ln }\left| \sin x \right| + C\]
\[ = - \frac{\cot^4 x}{4} + \frac{\cot^2 x}{2} + \text{ ln }\left| \sin x \right| + C .........\left( \because t = \cot x \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 32 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{a}{b + c e^x} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x e^{2x} \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int \sin^4 2x\ dx\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int \tan^3 x\ \sec^4 x\ dx\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×